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In this article we review the image reconstruction algorithms used in tomog-
raphy. We restrict ourselves to the standard problems in the reconstruction
of function from line or plane integrals as they occur in X-ray tomography,
nuclear medicine, magnetic resonance imaging, and electron microscopy. Non-
standard situations, such as incomplete data, unknown orientations, local to-
mography, and discrete tomography are not dealt with. Nor do we treat
nonlinear tomographic techniques such as impedance, ultrasound, and near-
infrared imaging.
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1. Introduction

By 'tomography' we mean a technique for imaging 2D cross-sections of 3D
objects. It is derived from the Greek word TO^LO<; = slice. Tomographic
techniques are used in radiology and in many branches of science and tech-
nology.
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1.1. The basic example

In the simplest case, let us consider an object whose attenuation coefficient
with respect to X-rays at the point x is f(x). We scan the cross-section by
a thin X-ray beam L of unit intensity. The intensity past the object is

e

This intensity is measured, providing us with the line integral

g(L) = Jf(x)dx. (1.1)
L

The problem is to compute / from g.
In principle this problem has been solved by Radon (1917). Let L be the

straight line x • 0 = s where 6 = (cos <p, sin ip)T and s G R1. Then, (1.1) can
be written as

g{0,s)= J f(x)dx = (Rf)(6,s). (1.2)
x-e=s

R is known as the Radon transform. Radon's inversion formula reads
2?r

where g' is the derivative of g with respect to s, and 6 = (cos<p,sin(p)T.
In principle, (1.3) solves our problem. So, why do we write an article on
tomography?

First, inversion formulas such as (1.3) do not exist in all cases. For in-
stance, in emission tomography, the mathematical model involves weighted
line integrals, which in general do not admit explicit inversion. Also, even
if explicit inversion is possible, it is not obvious how to turn an inversion
formula such as (1.3) into an efficient and accurate algorithm. Many prob-
lems concerning sampling and discretization arise. Often not all of the data
in an explicit inversion formula can be measured. Finally, (1.1) is a prime
example for many imaging techniques, and a proper understanding of the
inversion of (1.1) is a necessary prerequisite for the understanding of more
complicated problems.

1.2. An annotated bibliography

As an introduction into the many applications of (1.1) we recommend Deans
(1983). For the mathematical background see Natterer (1986). Herman
(1980) gives a good introduction into the mathematical and algorithmic
problems. For the practitioner we recommend Kak and Slaney (1987), which
provides an in-depth coverage of the electrical engineering point of view.



NUMERICAL METHODS IN TOMOGRAPHY 109

1.3. Outline of the paper

In Section 2 we describe the most important algorithm in tomography,
namely the filtered backprojection algorithm. Not only is it the workhorse
for today's tomography, but it also serves as the model for the algorithms
in future imaging devices, such as the 3D algorithms described in Section 3.
Since many imaging problems can be described by large linear sparse sys-
tems of equations, iterative methods suggest themselves (see Section 4).
Algorithms exploiting rotational symmetry of the imaging devices are de-
scribed in Section 5. In Section 6 we deal with algorithms which work
exclusively in Fourier space and which have the potential to outperform the
filtered backprojection algorithm in speed.

1.4- Prerequisites

The reader needs only a rudimentary knowledge of numerical analysis (inter-
polation, quadrature, linear systems), functional analysis (linear operators,
distributions), Fourier analysis (Fourier transform, Fourier series, inversion,
convolution, fast Fourier transform (FFT)) and sampling theory (Shannon's
sampling theorem for band-limited functions).

2. The filtered backprojection algorithm

In this section we give a detailed description of the most important algorithm
in 2D tomography. The discrete implementation depends on the scanning
geometry, that is, the way the data are sampled.

This algorithm is essentially a numerical implementation of the Radon
inversion formula (1.3). However, a different approach avoiding singular
integrals is simpler. We describe this approach for the n-dimensional Radon
transform

9(0,8) = J f(x)dx = (Rf)(0,s)
x-6-s

where / is a function in Rn and 0 € S n ~ \ s e t 1 . Let

(R*g)(x)= I g(6,0-x)d6
gn-l

be the backprojection operator and let V, v be functions such that V =
R*v. Mathematically, R* is simply the Hilbert space adjoint of the Radon
transform R. It is easy to see that

V*f = R*(v*g), (2.1)

where the convolution on the left-hand side is in Rn, while the convolution on
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the right-hand side is a ID convolution with respect to the second variable:

fv(x-y)f(y)dy = f f v(x • 6 - s)g(8, s) dsd9. (2.2)

The idea is to choose V as an approximation to Dirac's <5-function. Then,
V -k f is close to / . The interrelation between V, v is easily described in
terms of the Fourier transform. Denoting with the same symbol 'A' the
n-dimensional Fourier transform

= (27r)-"/2 f e-ix<V{x)dx,

and the ID Fourier transform

v{6, a) = (27T)"1/2 / e~isav{6, s) ds, a G R1,

R1

we have

see Natterer (1986). By |£| we mean the Euclidean length of £ G W1.
The choice of V determines the spatial resolution of the reconstruction

algorithm. We use the notion of resolution from sampling theory: see Jerry
(1977). We give a short account of some basic facts of sampling theory. A
function / in M.n is said to be band-limited with bandwidth 17, or simply
Jl-band-limited, if /(£) = 0 for |£| > fi. An example for n = 1 is the sine
function

sin x
smc (x) = ,

x

which has bandwidth 1. Obviously, sine (fix) has bandwidth Q. J7-band-
limited functions are capable of representing details of size 27r/f2 but no
smaller ones. This becomes clear simply by looking at the graph of sine.

In tomography the functions we are dealing with are usually of compact
support. Such functions cannot be strictly band-limited, unless identically
zero. Hence we require the functions only to be essentially Q-band-limited,
meaning that /(£) is approximately 0 for |£| > Q in some sense: see Natterer
(1986).

A reconstruction method in tomography is said to have resolution 2vr/0
if it reconstructs essentially fi-band-limited functions reliably.

For strictly fi-band-limited functions we have the following propositions,
which also hold, with very good accuracy, for essentially fi-band-limited
functions.
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1. If / is f2-band-limited and h < TT/Q (the Nyquist condition), then / is
uniquely determined by the values f(hk), k € Z, and

f[x) =

2. If / is fi-band-limited and h < ir/Cl, then

- hk).

3. If / i , J2 are fi-band-limited and h < vr/fi, then

fi(x)f2(x)dx =f
Returning to the creation of a reconstruction algorithm with resolution
2vr/f2, we have to determine V such that

where 0 is a filter with the property

This follows from the formula 6 = (2-7r)"n/'2. This means that for the filter
function v we must have

i n — 1 , (2.3)

Examples are the ideal low pass

the cos filter

and the filter

1, \a
0, \a

_ J cos (air/2), \a
0, \a

__ J sine (air/2),

which has been introduced in tomography by Shepp and Logan (1974). The
corresponding functions v for n — 2 are

vn{s) = ^ M ( Q S ) , U(S) = sine (s) - - (sine (-J J
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for the ideal low pass,

with the same function u, and

/ / 2 - s sin s,

for the Shepp-Logan filter. More filters can be found in Chang and Herman
(1980).

The integral on the right-hand side of (2.2) has to be approximated by a
quadrature rule. We have to distinguish between several ways of sampling
9 = Rf-

2.1. Parallel geometry in the plane

In this case the 2D Radon transform g(0,s) = (Rf)(0,s) is sampled for
6 = 0j = (cospj, sinipj)T, ifj = irj/p, j = 0,.. . ,p - 1 and s = se = £p/q,
£ = —q,..., q. Here p is the radius of the reconstruction region, that is,
we assume f(x) = 0 for x G M2, \x\ > p. This means that the measured
rays come in p parallel bundles with directions evenly distributed over 180°,
each bundle consisting of 2q + 1 equispaced lines. This was the scanning
geometry of the first commercial scanner for which Hounsfield received the
Nobel prize in 1979. This geometry has been replaced by more efficient ones
in today's scanners (see below), but it is still used in scientific and technical
imaging.

We evaluate the integral in (2.2) by the trapezoidal rule

(V * f)(x) ^2-^Y,Y. "«(* • 9i - 8i)9(6j> se)- (2-4)
Pq j=Q£=-q

The accuracy of this approximation can be assessed by sampling theory,
according to which the trapezoidal rule for an inner product is exact provided
the step-size h satisfies the Nyquist criterion, that is, h < ir/Cl where Q is the
bandwidth of the factors in the inner product. In our case the first factor is
VQ(X • 0j — s) (as a function of s) which has bandwidth $1. The second factor
is g(0j, s) (again as a function of s). This is given and does not, in general,
have finite bandwidth. At this point we have to make an assumption.

We assume / to be essentially band-limited with essential bandwidth 0.
The n-dimensional Fourier transform of / and the ID Fourier transform Rf
(with respect to the second variable) are interrelated by

(Rf)A(0, a) = (27r)("-1)/2/(^). (2.5)

This is the famous (and easy to prove) 'projection' or 'central slice' theorem
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of computerized tomography. In the present context we need it only to
deduce that / and g = Rf have the same (essential) bandwidth. Thus the s-
integral in (2.2) is accurately represented by the l-sum in (2.4) provided that
the step-size h = p/q in that sum satisfies the Nyquist criterion h < 7r/S7.
In other words,

q > -pQ. (2.6)

The condition for the number p of directions which makes the j'-sum in (2.4)
a good approximation for the ^-integral in (2.2) is less obvious. Based on
Debye's asymptotic relation for the Bessel functions one can show that the
essential bandwidth of Rf as a function of ip, 8 = (cos ip, sin <p)T, is flp: see
Natterer (1986). The step-size h for the ^-integral being n/p, the Nyquist
criterion requires | < ^~, that is,

p > nP. (2.7)

Inequalities (2.6), (2.7) are the conditions for high accuracy in (2.4), assum-
ing / to be zero outside the ball of radius p and essentially band-limited
with bandwidth Q,.

The double sum in (2.4) has to be evaluated for each reconstruction point
x. This leads to unacceptable complexity. This complexity can be reduced
by introducing the function

9

Then, (2.4) reads

%=0

This requires only a simple sum for each reconstruction point x, at the
expense of an additional interpolation in the second argument of h. In
most cases linear interpolation suffices (but nearest neighbour does not).
This leads us to the filtered backprojection algorithm for standard parallel
geometry (see Herman (1980, p. 133)).

Algorithm 1
Filtered backprojection algorithm for standard parallel geometry

Data: The values {gj/ = g(9j, se) : j = 0 , . . . ,p — 1, £ = —q,..., q}, where
g is the 2D Radon transform of / .

Step 1: For j = 0, . . . ,p — 1 carry out the discrete convolution

p Y~»

q e=-q
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Step 2: For each reconstruction point x, find the discrete backprojection

f ( \ — — V^ ((1 — 9U -I- 9/? 1
^ 3=0

where k = k(j, x) and i? = -d(j, x) are determined by

+ — 2. £• — l + l i9 t h
L , A, I t I , U (/ ft,.

Result: fpB is an approximation to f(x).

The algorithm depends on the parameters p, q and on the choice of VQ.
It is designed to reconstruct a function / with support in \x\ < p and with
essential bandwidth fi, that is, the spatial resolution of the algorithm is
2TT/Q. Conditions (2.6), (2.7) should be satisfied. A few remarks are in
order.

1. Condition (2.6) has to be strictly satisfied. Otherwise the s integral in
(2.2) is not even approximately equal to the £ sum in (2.4), leading to
unacceptable errors.

2. If (2.7) is not satisfied, the reconstruction is still accurate for \x\ <
p/9, < p.

3. Filter functions VQ whose 'kernel sum'

does not vanish should not be used: see Natterer and Faridani (1990).

4. Usually, linear interpolation in Step 2 is sufficient. However, for difficult
functions / (e.g., functions containing large objects at the boundary
of the reconstruction region) linear interpolation generates visible arte-
facts. In that case an oversampling procedure similar to the one of
Algorithm 2 below is advisable. Alternatively one may use the circular
harmonic algorithm from Section 5.

5. The algorithm needs O(p) operations for each reconstruction point.
Algorithms with lower complexity (such as O(logp)) can be obtained
either by Fourier reconstruction (see Section 6) or by the fast back-
projection algorithm in Section 2.5.

6. Conditions (2.6), (2.7) suggest taking p — irq. This much debated con-
dition is usually not complied with in radiological applications, where
p is chosen to be considerably smaller. This is due to the special re-
quirements in radiological imaging.
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2.2. The interlaced parallel geometry

It is well known (see, for instance, Kruse (1989)) that the data in the stan-
dard parallel geometry are redundant: if p is even, then one can omit each
g(6j,se) with £ + j odd without impairing the resolution. Deriving algo-
rithms that use only the remaining 'interlaced' data (i.e., those g(Oj, Si) for
which j + £ even) is fairly subtle. What happens is the following. If in the £
sum in (2.4) every second term is dropped, the sum no longer approximates
the corresponding s integral in (2.2). Miraculously, the large quadrature
error cancels when the j sum in (2.4) is computed. This means that success
depends entirely on a subtle interplay between different directions. This in-
terplay is disrupted by the interpolation procedure in Step 2 of Algorithm 1.
There are two ways out. The first one is to avoid interpolation altogether
by using circular harmonic algorithms: see Section 5. The second one is to
make the interpolation more accurate, for instance by oversampling. This
leads to an algorithm that has the structure of a filtered backprojection
algorithm.

Algorithm 2
Filtered backprojection algorithm for parallel interlaced geometry

Data: The values {g(9j, se) : j = 0,. . . ,p — 1, £ — —q,..., q, £ + j even},
where g is the 2D Radon transform of / , and p has to be even.

Step 1: Choose a sufficiently large integer M > 0 (M = 16 will do) and
compute, for j — 0,.. . ,p - 1,

E ^ ( g ^ ) s ( ^ ) k = -Mq,...,Mq.
t=-q

£+j even

Step 2: For each reconstruction point x, compute

2 p"1

fFB(x) = — Y, ((1 - #)hj,k + %,fc+i),
P 3=0

where k = k(j,x), 1? = $(j, x) are determined by

t = Ma—p-, k = \ t \ , # = t - k .
p/q

Result: / F B ( ^ ) is an approximation to f(x).

Note that the difference between this algorithm and Algorithm 1 is that
it needs only half the data but produces the same image quality. We study
the various assumptions underlying this algorithm.
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1. The algorithm is designed to reconstruct a function / supported in
\x\ < p with essential bandwidth fi. The sampling conditions (2.6),
(2.7) have to be satisfied. In contrast to Algorithm 1, oversatisfying
these conditions may lead to artefacts. Thus the algorithm should be
used only if (2.6), (2.7) are satisfied with equality, that is, for p = ir • q.

2. Only filters v with a smooth transition from nonzero to zero values
should be used. The reason is that the additional filtering of the inter-
polation step is not present in Algorithm 2.

2.3. Standard fan beam geometry

This is the most widely used scanning geometry. It is generated by a source
moving on a concentric circle of radius r > p around the reconstruction
region \x\ < p, with opposite detectors being read out in small time intervals
(third generation scanner). Equivalently we may have a fixed detector ring
with only the source moving around (fourth generation scanner). Denoting
the angular position of the source by 0 and the angle between a measured
ray and the central ray by a (a > 0 if the ray, viewed from the source, is
left of the central ray), then fan beam scanning amounts to sampling the
function

g{0,a) = (Rf)(9,r sin a),

9 = (COf + a\) (2.8)
\ sm(/j + a) J x '

at the points

0 = 0j=jA0, A0 = 2n/p, j = 0,...
, £=-q,...,q.

Here, q is chosen so as to cover the whole reconstruction region \x\ < p with
rays, and d is the detector offset which is either 0 or ±Aa/4.

First we derive the fan beam analogue of (2.1). We only have to put
<p = 0 + a, s = rsince to map fan beam coordinates to parallel coordinates
as used in (2.1). The region [0, 2vr) x (—TT/2, TT/2) of the 0-a plane is mapped
in a one-to-one fashion onto the domain [0, 2ir) x (—r, r) in the ip-s plane,
and we have

d(tp,8)

d(0,a)
Thus (2.2) in the new coordinates reads

2TT /

1 1
= rcosa.0 r cos a

/
(V * f)(x) = r / v(x • 9 — r sina)g(0, a) cosccdad/3

0 - T T / 2
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with 9 as in (2.8). Discretizing the integral by the trapezoidal rule yields

p - l q

(V*f)(x) ~ r A a A / 3 ^ ^ va{x • 6(/3j + ae) - rsmae)g(f3j,ae) cosae.
j=o e=-q

(2.9)
This is the fan beam analogue of (2.4) and defines a reconstruction algorithm
for fan beam data. One can show that for this algorithm to have resolution
2?r/f2 one has to satisfy

see Natterer (1993).
As in the parallel case, an algorithm based on (2.9) needs O(pq) operations

for each reconstruction point. Reducing this to O(p) is possible here, too,
but this is not as obvious as in the parallel case. We first establish a relation
for the expression x • 0(ip) — s in (2.2). Let b = rd((3) be the source position,
and let 7 be the angle between x — b and —6. We take 7 positive if x, viewed
from the source b, lies to the left of the central ray, that is, we have

(b-x) -b
C O 6 7 = |6 -x l - |6 | '

where 0(<p) = (cos<p, sin<p)T. Let y be the orthogonal projection of x onto
the ray with fan beam coordinates (3, a. Then \x • 0(ip) — s\ = \x — y\.
Considering the rectangular triangle xyb we see that \x — y\ = \b — x\ sin I7 —

a , and hence

I a; • #(</?) — s\ = \b — x\ sin I7 — a\.

Our filters VQ possess the homogeneity property

vn(ta) = t-2vtn(a). (2.11)

Thus,

vQ(x • 6{(p) - s) = \b - x|-2un|6_x|(sin(7 - a)).

Using this in (2.2) we obtain

2TT T/2

(V*f)(x) = r / \b-x\~2 / vn\b_xi(sm(j-a))g((3,a)cosadad/3.

0 -TT /2

Here, b = r9((3), and 7 is independent of a. Unfortunately, the a integral has
to be evaluated for each x since the subscript ft\b — x\ depends on x. In order
to avoid this we make an approximation: we replace Cl\b — x\ by fir. This
is not critical as long as \b — x\ ~ |6|, that is, as long as p <C r. Fortunately,
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in most scanners r ~ 3p, and this is sufficient for the approximation to be
satisfactory. However, if p is only slightly smaller than r, problems arise.

Upon the replacement of i>n|b_x| by VQr we obtain

2TT T/2

(V * f)(x) — r I \b — x\~2 I ^nr(sin(7 — a))g((3, a) cosadad/3.

0 -TT /2

The a integral can now be precomputed as a function of 7 and (3, yielding
an algorithm with the structure of a filtered backprojection algorithm.

Algorithm 3
Filtered backprojection algorithm for parallel standard fan beam geometry

D a t a : The values {gj<t = g(/3j,ae) : j = 0 , . . . ,p - 1, £ = -q,...,q}, where
g is the function in (2.8).

Step 1: For j = 0,. . . ,p — 1 carry out the discrete convolutions

vur(sm(ak - ae))gje cos at, k = -q,..., q.
l=-q

Step 2: For each reconstruction point x, compute the discrete weighted
backprojection

p-i

fFB(x) = rApJ2\bJ ~ x\~2 (C1 - #)h3,i° + #
. 3=0

where k = k(j, x) and d = ~d(j, x) are determined by

bj - x) • bj
7 = it arccos

\bj-x\\bj\'

the sign being the one of —x • bj and bj = r9((3j),

t = -?-, k=\t\, tf = t-k.
Aa

Result: / F B ( ^ ) is an approximation to f(x).

The algorithm as it stands is designed to reconstruct a function / with
support in \x\ < p which essentially band-limited with bandwidth fl from
fan beam data with the source on a circle of radius r > p. The remarks
following Algorithm 1 apply by analogy. In particular, conditions (2.10)
have to be satisfied. For r ~ p and with dense parts of the object close to
the boundary of the reconstruction region, problems are likely to occur.
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2.4. Linear fan beam geometry

Here, the detector positions within a fan with vertex b are evenly spaced
on the line perpendicular to b. We need the explicit form of the inversion
formula mainly for the derivation of the FDK algorithm in 3D cone beam
tomography in the next section. With g the function in (2.8), the sampled
data are

9j,e = g{/3j,ae), j = 0,...,p-l, £ = -q,...,q

Pj = — j , ae = t&-n(ye/r), ye = (£ + d)Ay.
P

The coordinates (f3, y) are related to the parallel coordinates (ip, s) in the
representation x • 9(ip) = s of the rays by

V TV
<̂  = /3 + arctani, s= y (2.12)

r [r1 + ylyil

Hence,
d { ) r 3

d{0,y) (r2+

Substituting (/?, y) for (ip, s) in (2.2) leads to
2TT

(V*f)(x) = J Jv(x.9(<p)-s)g((3,y) r3dydp
(r2 + t

where (2.12) has to be inserted for (<p,s). As in the standard fan beam
case, a direct implementation of this formula results in an algorithm whose
complexity is not competitive. Again we can circumvent this problem by
exploiting the homogeneity properties of v. A lengthy but elementary com-
putation shows that

x-0(tp) - s = c(z - y),

_ r-x- 6(/3) _ rx • 9(0 + TT/2)
c z

) r-x

Prom (2.11) it follows that

vn(c(z - y)) = c~2vcn(z - y),

yielding
2TT

(V*f) = I Jc-2vcU(z-y)g((3,y)-{
r

3dyd/3
(r2

0 Rl
2TT

f 1 f
= r - n/aw> I vcn(z-y)g((3,y)-

J [r — x • u(p)Y J i
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As in the standard fan beam case we make the approximation c ~ 1. Again
this is justified if p <C r, for instance r > 3p. Then,

(V*f)(x)^ f ^ f vn (^^ ~ y) 9(8, V), 2 \J (r — x • vy J \r — x • t) ) \r*-\-
S1 K1

where O±(tp) — 6(ip + IT/2). Defining

h(0, z) = j vQ(z - y)g(O, y) ^ u /2 , (2-13)

this can be written as

(v*f)(x)~ fh(e, ™_'^e)
 de- (2-14)

The implementation of (2.13), (2.14) can now be done exactly as in the
standard case, leading to a filtered backprojection algorithm which needs
O(p) operations for each reconstruction point x.

2.5. Fast backprojection

The backprojection (Step 2 in Algorithms 1-3) is the most time-consuming
part of the filtered backprojection algorithm. The filtering or convolution
step (Step 1 in Algorithms 1-3) requires in principle the same number of
operations, but this can easily be reduced drastically either by cutting off
the filter VQ or by using the fast Fourier transform (FFT).

The backprojection consists of the evaluation of the sums

o n a p x p grid. This is the simplest case of Algorithm 1, the resolution of the
image being adjusted to the number of views p according to the sampling
theorem. Nilsson (1997) suggested a divide and conquer strategy for doing
this with O(p2logp) operations, as opposed to the O(p3) operations of a
direct evaluation. Suppose p = 2m.

Step 1: For j = 0,1, 2 , . . . ,p — 1, compute

f}(x)=g(9j,x-ej).
Since fj is constant along the lines x • 6j = s it suffices to compute fj (x) at
2p points x. We need p • 2p operations.

Step 2: For j = 0 ,2 ,4 , . . . ,p - 2, compute
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Since fj, fj+l are constant along the lines x-Oj = s, x-Oj+i — s, respectively,
fj is almost constant along the lines x • 9j = s where 9j — (0j + 0j+i)/\/2.
Hence it suffices to compute fj only for a few, say 2, points on each of those
lines. This means that we have to evaluate fj at 4p points, requiring | • 4p
operations.

Step 3: For j = 0,4,8,. . . , p - 4, compute

With the same reasoning as in Steps 1 and 2 we find that it suffices to
compute ff(x) for only for 8p points, requiring | • 8p operations.

Proceeding in this fashion we arrive in Step m at the approximation /j™ to
/ , which has to be evaluated at 2mp points. Hence the number of operations
in Steps 1 to m is

p • 2p + | • 4p + | • 8p + • • • + ^ • 2 > = mp2

and this is O(p2logp). Of course this derivation is heuristic, and we have
simply ignored the necessary interpolations and approximations. However,
practical experience demonstrates that such an algorithm can be made to
work.

3. 3D reconstruction formulas

Algorithms for 3D tomography are still under development. The main prob-
lem is that the data entering explicit inversion formulas are usually not avail-
able. Thus the main task in 3D tomography is the derivation of inversion
formulas that use only the data measured by a specific imaging device. It is
clear that these formulas are tailored to the imaging device. In this section
we restrict ourselves to the derivation of exact or approximate inversion for-
mulas. The implementation in a discrete setting can be done along the lines
of the 2D algorithms.

3.1. Inversion of the 3D Radon transform

Let g = Rf, R the 3D Radon transform, be given on S2 xR1. Using (2.1)
for n = 3 leads directly to a filtered backprojection algorithm, exactly as in
the 2D case. Introducing spherical coordinates <p, t/) on S2, that is,

( sini/) cos (/A
sinV' sin ip J , 0 < ip < 2TT, 0 < ip < IT,

cos?/> J
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(2.1) reads

(V*f)(x)= f f h(8,x-d)sinipdipdp, (3.1)

0 0

where 8 = 8((p, ip) and

h(8,t) = I g(6,s)v(t-s)ds.

Once h is computed, the evaluation of (3.1) requires the computation of a
2D integral for each reconstruction point. This is prohibitive in real world
applications.

Fortunately we can exploit the structure of the 3D Radon transform as
the composition of two 2D Radon transforms. Putting

n

kv(s,t) — / h(6(<p, t/j), s cosip + tsin^>) sinipdip,

o

we can rewrite (3.1) as

(V*f)(.x)= / k^xa, xi cos ip + x2 sin ip) dip. (3.2)

o

The last two formulas are essentially 2D backprojections. They can be evalu-
ated exactly as described in the previous section. After having precomputed
h and k the final reconstruction step (3.2) requires only a ID integral for
each reconstruction point. This algorithm is reminiscent of the two-stage
algorithm of Marr, Chen and Lauterbur (1981), developed for magnetic res-
onance imaging (MIR), except that the convolution steps are not present.

3.2. The FDK approximate formula

This is the most widely used algorithm for cone beam tomography with the
source running on a circle. It is well known that this inversion problem is
highly unstable. However, practical experience with the FDK formula is
nevertheless quite encouraging.

The function sampled in cone beam tomography with the source on a
circle is

g(0,y) = Jf(rO + ty)dt,

where 9 is a direction vector in the X\-X2 plane, 0 = (cos ip, sirup, 0)T,
01- is the subspace orthogonal to 9, while 8± (see below) is the vector
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(— simp, cosip, 0)T perpendicular to 9. As usual we assume / = 0 outside
x\ < p where p < r.

The FDK formula is an ingenious adaptation of the 2D inversion formula
of Section 2.4 to 3D. Consider the plane ir(9, x) through r9 and x which
intersects 91- in a line parallel to the x\-X2 plane. Compute in this plane for
each 9 the contribution to (2.14). Finally, integrate all these contributions
over Sl, disregarding the fact that the contributions come from different
planes.

The necessary computations are unpleasant, but the result is fairly simple.
Based on (2.14),

(V*f)(x)* I -r^-r2 fvQ(u-u')g(9,u',z) r d t i ' f =, (3.3)
J v~x') J V +u + zA

S1 R1

where
r r

r — x • 9 ' r — x • 9

and (u',z) are coordinates in ^±, that is, g(9,u',z) stands for g(9,y) with
y = (—u'sinip, u'cosip, z)T. The implementation of (3.3) leads to a recon-
struction algorithm of the filtered backprojection type. The reconstructions
computed with the FDK formula (3.3) are - understandably - quite good
for flat objects, that is, if / is nonzero only close to the x\~X2 plane in which
the source runs. If this is not the case then exact formulas using more data
such as Grangeat's formula (see below) have to be used.

3.3. Grangeat's formula

Grangeat's formula requires sources on a curve C with the following prop-
erty: each plane meeting supp (/) contains at least one source. This condi-
tion is obviously not satisfied when C is a circle for which the FDK approx-
imation has been derived.

The data for Grangeat's formula are generated by the function

g(c,9)= f f{c + t9)dt, ceC, 9eS2.

The condition on the source curve means that for each x with f(x) ^ 0 and
each 9 € S2 there exists a source c = c(x, 9) G C such that x • 9 = c(x, 0) • 9.

The gist of Grangeat's inversion is a relation between g and the 3D Radon
transform Rf of / . This relation reads (Grangeat 1991)

g-s(Rf)(9,s)\s=x.e= j —g{c(x,0),cj)du>, (3.4)

where ^ stands for the derivative in the direction 9 € 52, acting on the
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second argument. For this to make sense we have to extend g to all of
C x E3 by using the above definition not only for 9 € S2, but for all of R3.
This is equivalent to extending g by homogeneity of degree —1 in the second
argument. With the help of the 3D inversion formula

S2

for the 3D Radon transform, Grangeat's formula leads immediately to an
inversion procedure for the data g. Related inversion formulas for cone beam
tomography have been derived by Tuy (1983) and Gelfand and Goncharov
(1987). For details of the implementation see Defrise and Clack (1995).

3.4- Orlov's inversion formula

This formula inverts the ray transform

(Pf)(9,y) = J f(y + t9)dt, ye9x, 9 e S2 (3.5)
R1

which arises, for instance, in 3D emission tomography (PET, Defrise, Towns-
end and Clac (1989)). If 9 is restricted to a plane, then we simply have the
Radon transform in this plane, and we can reconstruct / in that plane by
any of the methods in the previous section. In practice g = Pf is measured
for 9 e S2, where SfiCS2. In Orlov's formula (Orlov 1976), S$ is a spherical
zone around the equator, that is,

S2 = {0(<p,il>) :^-(v)<ip< if>+{<p), 0 < ^ < 2TT}

using spherical coordinates 9((p,tp) — (cos (p cos ip, simp cos I/J, sin ip)T and
-7r/2 < ip- < V+ < TT/2. Then,

f{x) = A f h(0, x - (x • 9)9) d0,

g(9,x-y)
dy, (3.6)

where A is the Laplacian acting on x and £(9, y) is the length of the inter-
section of S2 with the plane spanned by 0,9,y € M3. The first formula of
(3.6) is - up to A - a backprojection, while the second one is a convolution
in #-*-. Thus an implementation of (3.6) is again a filtered backprojection
algorithm.

P can also be inverted by the Fourier transform. We have

£ G 0 \ (3.7)
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where 'A' denotes the (n — l)-dimensional Fourier transform in 91- on the
left-hand side and the Fourier transform in W1 on the right-hand side.

Assume that S2, C S2 satisfies the Orlov condition: every equatorial circle
of S2 meets SQ. Note that the set S2. (the spherical zone) we used above
in Orlov's formula satisfies this condition. From (3.7) it follows that / is
uniquely determined by (P/)(0, •) for 9 G SQ under the Orlov condition.
Namely, if £ G Rn is arbitrary, then Orlov's condition says that there exists
S e ^ n ^ 1 , and /(£) is determined from (3.7).

3.5. Colsher's inversion formula

Assume again that g = Pf is known for 9 G S2, C S2.
We want to derive an inversion procedure similar to the one in Section 2.1.

With the backprojection

(P*g)(x) = Jg(9,x-(x-9)9)d9,

we again have

So2

V*f = P*(v*g)

provided that V = P*v. Again the convolutions on each side have different
meanings. Explicitly this reads

(V * f)(x) = J Jv(9,x- (9 • 9)9 - y)g{9,y) dyd0, (3.8)

si
which corresponds to (2.2). As in (2.2) we express the relationship V = P*v
in Fourier space, obtaining

see Colsher (1980). In order to get an inversion formula for P we have to
determine v such that V = 6 or V = (2n)~3/2, that is,

J ,Od0 = (27r)-2K|. (3.9)

A solution v independent of 9 is
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where \SQ D ̂ l is the length of SQ C\ £-*-. For the spherical zone SQ from
Section 3.4 with ip_ = ipQ, ip+ = ipQ, ipo a constant with 0 < tpo < | , Colsher

computed h explicitly. Setting £3 = |£J cos?/' we obtain

\ ( 4(2vr)2 \(4arcsin(sinVo/sinV) \

Filters such as the Colsher filter (3.10) do not have small support. This
means that g in (3.8) has to be known in all of 91-. Often g is only available
in part of 91- (truncated projections). Let us choose

where 9 = 9(<p, ip) is as denned in Section 3.4 and a{9) = (— sinip, cos </?, 0)T

is a horizontal unit vector. Since (3.11) is constant in the vertical direction,
v is a ^-function in the vertical variable. Hence the integral on the right-
hand side of (3.8) reduces to an integral over horizontal lines in 0-1, making
it possible to handle truncated projections. Unfortunately, (3.11) does not
quite satisfy V = (2?r)~3/2, that is, it does not provide an exact inversion.
Instead we only have

/ ° ^ ^°'
where |£3| = |^'| tan V, l̂ 'l = VW+M- T h i s i s c l o s e to F = (27r)"3/2 if Vo
is small. In this case reconstruction from truncated projections is possible,
at least approximately.

3.6. Conical tilt geometry

In electron microscopy (Frank 1992) one is faced with the case

for some ipo where 0((p,ip) = (cos(psin.i/j,sm(psinip, cos^O^- SQ does not
satisfy Orlov's condition, and (3.9) cannot be satisfied since SQH^ = <f> for
some £. In that case we put

^ 0, otherwise.

With this choice of v, (3.8) is the minimal norm solution of Pf = g. A
proper discretization along the lines of Section 2.1 leads to the weighted
backprojection algorithm of electron microscopy: see Frank (1992).
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4. Iterative methods

If exact inversion formulas are not available, iterative methods are the al-
gorithms of choice. However, even if exact inversion is possible, iterative
methods may be preferable due to their simplicity, versatility and ability to
handle constraints and noise.

Iterative methods are usually applied to discrete versions of the recon-
struction problem. These discrete versions are obtained either by starting
out from discrete models, as in the EM algorithm below, or by a projection
method, known as a 'series expansion method' in the tomographic commu-
nity (Censor 1981). This means that the unknown function / is written
as

N

for certain basis functions B^. With g\ the ith measurement, the measure-
ment process being linear, we obtain the linear system

N

for the expansion coefficients /^, the matrix element an being the ith mea-
surement for the basis function B^. In tomography we always have an > 0.
Also, the matrix (an) is typically sparse. Often B( is the characteristic
function of pixels or voxels. Recently, smooth radially symmetric functions
with small support (the 'blobs' of Lewitt (1992) and Marabini, Herman and
Carazo (1998)) have been used. Blobs have several advantages over pixel- or
voxel-based functions. Due to the radial symmetry it is easier to apply the
Radon transform (or any of the other integral transforms) to B^, making it
easier to set up the linear system (4.1). The smoothness of the B^ prevents
a 'checkerboard' effect (i.e., the visual appearance of the pixels or voxels in
the reconstruction) and does part of the necessary filtering and smoothing.

The linear system (4.1) may be overdetermined (M > N) or underdeter-
mined (M < N), consistent or inconsistent. Useful iterative methods must
be able to handle all these cases.

4-1- ART (algebraic reconstruction technique)

This is an extension of the Kaczmarz (1937) method for solving linear sys-
tems. It has been introduced in imaging by Gordon, Bender and Herman
(1970). We describe it in a more general context. We consider the linear
system

Ajf = gj, j = 0,...,p-l1 (4.2)
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where Ao•, : H —*• Hj are bounded linear operators from the Hilbert space H
ilbert space
an iteration

ffc,0 _ *fc

o j p p
into the Hilbert space Hj. With C,- : ifj —> H,- a positive definite operator
we define an iteration step fk —> / as follows:

j = O,...,p-l (4.3)

_ fk,p

If Cj = A*-Aj (provided Aj is surjective) and u — 1, then / f c j is the orthogo-
nal projection of fk^~1 onto the afflne subspace Ajf — gj. For dim(Hj) = 1
this is the original Kaczmarz method. Other special cases are the Landweber
method (p = 1, C\ = I) and fixed-block ART (dim(Hj) finite, Cj diagonal:
see Censor and Zenios (1997)). It is clear that there are many ways to apply
(4.3) to (4.1), and we will make use of this freedom to our advantage.

One can show (Censor, Eggermont and Gordon 1983, Natterer 1986) that
(4.3) converges provided that

p-i

J ^ y.range {Aj)
i=o

and 0 < to < 2. This is reminiscent of the SOR theory of numerical analysis.
In fact we have fk = Auk where uk is the A;th SOR iterative for the linear
system AA*u = g with

/ 50

H ;
\ 5 P - I .

If (4.2) is consistent, ART converges to the solution of (4.2) with minimal
norm in H.

Plain convergence is useful, but we can say much more about the qual-
itative behaviour and the speed of convergence by exploiting the special
structure of the image reconstruction problems at hand. With R the Radon
transform in Rn we can put

H = L2(|x| < 1), Hj = L 2 ( - l , +1; wl~n),

(Ajf)(s) = (Rf)(0j,s)

where w is the weight function (1 — s2)1/2 and 9j E S1""1. One can show
that the subspaces

CmJ(x) = C^2{x-63),

the Gegenbauer polynomials of degree m (Abramowitz and Stegun 1970)
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are invariant subspaces of the iteration (4.3). This has been discovered by
Hamaker and Solmon (1978). Thus it suffices to study the convergence on
each subspace Cm separately. The speed of convergence depends drastically
on UJ and - surprisingly - on the way the directions Oj are ordered. We
summarize the findings of Hamaker and Solmon (1978) and Natterer (1986)
for the 2D case where 6j = (cos ipj, sinipj).

1. Let the tpj be ordered consecutively, that is, ipj = jir/p, j = 0 , . . . ,p— 1.
For u large (e.g., u> = 1) convergence on Cm is fast for m < p large and slow
for m small. This means that the high-frequency parts of / (such as noise)
are recovered first, while the overall features of / become visible only in the
later iterations. For u small (e.g., u = 0.05) the opposite is the case.

This explains why the first ART iterates for u = 1 look terrible and why
surprisingly small relaxation factors (e.g. u = 0.05) are used in tomography.

2. Let {<Pj} be uniformly distributed in [0, n] and ui = 1. Then the con-
vergence is fast on all Cm, m < p. The same is true for more sophisticated
arrangements of the ipj, such as, for p = 18 (Hamaker and Solmon 1978),

0,9,14,5,11,3,16,7,13,2,10,17,4,8,15,1,6,12,

or, similarly, for p — 30 in Herman and Meyer (1993).
The practical consequence is that a judicious choice of directions may

well speed up the convergence tremendously. Often it suffices to do only 1-3
steps if the right ordering is chosen. This has also been observed for the EM
iteration (see below).

Note that the Cm with m > p are irrelevant since they describe those
details in / that cannot be recovered from p projections because they are
below the resolution limit. This is a result of the resolution analysis in
Natterer (1986).

4-2. EM (expectation maximization)

The EM algorithm for solving the linear system Af = g reads

k > 0 ( 4 4 )

Multiplications and divisions in this formula are understood component-
wise. It is derived from a statistical model of image reconstruction: see
Shepp and Vardi (1982). The purpose is to compute a minimizer of the log
likelihood function

t(f) = J>* MAf); - (Af)i). (4.5)
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The convergence of (4.4) to a minimizer of (4.5) follows from the general
EM theory in Dempster, Laird and Rubin (1977). Note that (4.4) preserves
positivity if an > 0.

The pure EM method (4.4) produces unpleasant images which contain
too much detail. Several remedies have been suggested. An obvious one is
to stop the iteration early, typically after 12 steps. One can also perform
a smoothing step after each iteration (EMS algorithm of Silverman, Jones,
Nychka and Wilson (1990)). A theoretically more satisfying method is to
add a penalty term —B(f) to (4.5), that is, to minimize

*(f)-B(f), (4.6)

—B(f) may be interpreted either in a Bayesian setting or simply as a smooth-
ing term. Typically,

= (f-7fB(f-J)
where B is a positive definite matrix and / is a reference picture. Unfortu-
nately, minimizing (4.6) is more difficult than minimizing (4.5) and cannot
be done with a simple iteration such as (4.4). For partial solutions to this
problem see Levitan and Herman (1987), Green (1990), Setzepfandt (1992).

As in ART, a judicious arrangement of the equations can speed up the
convergence significantly. The directions have to be arranged in 'ordered
subsets': see Hudson, Hutton and Larkin (1992).

4-3. MART (multiplicative algebraic reconstruction technique)

While ART converges in the consistent case to a minimal norm solution of
(4.1), MART is designed to converge to a solution of (4.1) which minimizes
the entropy

M

A log A- (4.7)

For this to make sense we assume that (4.1) has a positive solution, and we
seek the minimizer of (4.7) among those / that have only positive compo-
nents. This is reasonable in many tomographic problems.

The step fk -> fk+1 of the MART algorithm for (4.1) is as follows:

fk'° = fk,

aTfk,i-l

fk+1 _ fk,M

MART is an example of a multiplicative algorithm (see Pierro (1990)); an-
other example is the EM algorithm.
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5. Circular harmonic algorithms

Circular harmonic algorithms can be derived from the inversion formula of
Cormack (1963). For the 2D problem Rf = g it is obtained by Fourier
expansions

f(x) =

g(9,s) = ^gt(s)e^, 0 = (cos ^, sir
I

One can show that
oo

1 / • , S N

fjr\ — (a2 r^\~l2T, I \n'la\Aa (£,!}
jf.\r) — — / \s ~r ) J |£| I - )5^vsJcls- I53-1;

r

Tt is the Chebyshev polynomial of the first kind of order L In principle
this defines an inversion formula for R: the Fourier coefficients gn of g — Rf
determine the Fourier coefficients /^ of / via (5.1), and hence / is determined
by g.

The formula (5.1) is useless for practical calculations since Te increases
exponentially with £ outside [—1, +1]. Cormack (1964) also derived a stable
version of his inversion formula. It reads

-m

where Ug is the Chebyshev polynomial of the second kind of order £. This
formula does not suffer from exponential increase. It is the starting point of
the circular harmonic reconstruction algorithms of Hansen (1981), Hawkins
and Barrett (1986) and Chapman and Cary (1986).

We take a different route and start out from (2.1) again. We consider
only the case n = 2. Putting x — x^ = Si9((fk), 0(ip) = (cos<£>,sin</?)T, in
(2.4) we obtain

{V*f)(xik) = ^2 5Zvn(sjCos(^_fc) -se)g(0j,st).
Pq e=-qj=o

The j sum is a convolution. In order to make this convolution cyclic we
extend g(9j,S() by putting g(9j+p,se) = g(@j,—se), in accordance with the
evenness property of the Radon transform. Then,

{V*f){xik) = ^ ^ vn(sico&(<pj-k) - st)g(9j,se).
pq j=o
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Defining
2p- l

huk = - } j vn(sicos{<pj_k) - S£)g(9j,se),
P 3=0

£ = -q,...,q, i = O,...,q, k = 0 , . . . , 2p - 1,

we have g

P V^

"~qhhm'
This defines the circular harmonic algorithm.

Algorithm 4
Circular harmonic algorithm for standard parallel geometry

Data: The values {gjtt = g(9j, S() : j = 0 , . . . ,p — 1, £ = —q,..., q}, where
g is the 2D Radon transform of / .

Step 1: Precompute the number V£tij = VQ(S{ cos(ipj) — S£j and extend g^£
to all j = 0 , . . . , 2p — 1 by gj+p,£ = gj,-e-

Step 2: For i = 0 , . . . , q, £ = —q,..., q carry out the discrete cyclic convo-
lutions

2 p - l
7T ^ - - \

P '̂ "^ ' '

Step 3: For i = 0 , . . . , q and k = 0 , . . . , 2p — 1, compute

x P

Result: fcH(%ik) is a n approximation to f(xik).

Step 2 of the algorithm has to be done with a fast Fourier transform (FFT)
in order to make the algorithm competitive with filtered backprojection. In
that case Step 2 requires O(q2p log p) operations. This is slightly more (by
the factor logp) than what is needed in the filtered backprojection algorithm.
Step 3 needs Apq2 additions.

Algorithm 4 can be used almost without any changes for the interlaced
parallel geometry, that is, for c/^ with £ + j odd missing (p even). One
simply puts gjj = 0 for j + £ odd and doubles hgn- in Step 2.

Circular harmonic algorithms are also available for standard fan beam
data. Setting x = Xjfc = £i#(/3fc), U = iAt, At = p/q in (2.9) gives

q p - l

(V*f)(xik) ~rAaA/? ^ ]Pvn{Ucos(/3k_j-ae)-rsinae)g{i3j,ae)cosae,
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where g is now the fan beam data function from (2.8).

Algorithm 5
Circular harmonic algorithm for standard fan beam geometry

Data: The values {gjte = g((3j, at) : j = 0 , . . . , p - 1, £ = -q,..., q}, g being
given by (2.8).

Step 1: Precompute the numbers V£tij = vn(ti cos((3j — at) —r sinai) cosa^.

Step 2: For i — 0 , . . . , q, £ = —q,..., q carry out the discrete cyclic convo-
lutions

p - l

j=0

Step 3: For i = 0 , . . . , q and k = 0 , . . . ,p — 1 compute the sums

q

fcft(xik) = rAa ^2
l=-q

Result: fcHfaik) is an approximation to f(xik).

The complexity of Algorithm 5 is again O(q2p\ogp).
A few remarks are in order.

1. Circular harmonic algorithms compute the reconstruction on a grid
in polar coordinates. Interpolation to a Cartesian grid (for instance
for the purpose of display) is not critical and can be done by linear
interpolation.

2. The resolution of the circular harmonic algorithms is the same as for
the corresponding filtered backprojection algorithms in Section 2.1.

3. Even though circular harmonic algorithms are asymptotically a little
slower (by a factor of logp) than filtered backprojection, they usually
run faster due to their simplicity. This is true in particular for fan beam
data because in that case the backprojection is quite time-consuming.

4. Circular harmonic algorithms tend to be more accurate than filtered
backprojection because no additional approximations, such as inter-
polations or homogeneity approximations (in the fan beam case), are
used.

5. The disadvantage of circular harmonic algorithms lies in the fact that
they start with angular convolutions. This is considered impractical in
radiological applications.
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6. Fourier reconstruction

We have already made use of the relation

for the Radon transform in Rn in Section 2.1, and of the corresponding
formula for the n-dimensional ray transform

in Section 3.4. In this section we use these formulas to derive reconstruction
algorithms. To fix ideas, we consider the case of the 2D Radon transform,
sampled as in the standard parallel geometry. This means that g = Rf
i s g i v e n f o r 0 = 8j = (cos ipj, s i n ipj)T, ifj = irj/p, j = 0 , . . . , p — 1 a n d
s = s^ = £p/q, £ = — q,..., q, as in Section 2.1. Here, / is assumed to vanish
outside |x| < p.

The idea of Fourier reconstruction is very simple: do a ID Fourier trans-
form on g with respect to the second variable for each 6. According to (6.1)
this yields / in all of R2. Do a 2D inverse Fourier transform to obtain / .
Even though this seems fairly obvious, the numerical implementation in a
discrete setting is quite intricate. In fact, good Fourier algorithms have been
found only quite recently.

To begin with we describe the simplest possible implementation. We warn
the reader that this algorithm is quite useless since it is not sufficiently
accurate.

Algorithm 6
Standard Fourier reconstruction

Data: The numbers {gj^ — g(Oj, S() : j = 0 , . . . ,p— 1, £ = —q,..., q}, where
g is the 2D Radon transform of / .

Step 1: For j = 0 , . . . ,p — 1 carry out the discrete Fourier transform

gjtr = ( 2 7 r ) V ^ J2 einr£/%,t, r=-q,...,q.
q e=-q

Step 2: For each k G Z2, \k\ < q, find (j,r) such that r6j is as close as
possible to k and put

fk = (27T)-1/2^,r.

Step 3: Do the 2D discrete inverse Fourier transform

|fc|<9

Result: fm is an approximation to
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The algorithm is designed to reconstruct a function / with support in
|re| < p which is essentially Jl-band-limited. Inequalities (2.6), (2.7) have
to be satisfied. We stress again that the algorithm as it stands is not to
be recommended because of poor accuracy. Better versions are described
below.

A few comments are in order. In Step 1 we compute an approximation
9j,r to

^ j e^g^, s) ds,g

Under assumption (2.6) this approximation is reliable since Fourier trans-
forms are evaluated exactly by the trapezoidal rule if the Nyquist condition,
in our case (2.6), is satisfied. According to (6.1), Step 1 provides us with
the values

In Step 2 we compute / on the Cartesian grid (TT/P)Z2 by nearest neighbour
interpolation:

7T , \ ; , - 2
f^-k)~fk, keZz, \k\<q.

Since / vanishes outside \x\ < p, f has bandwidth p. Thus sampling of /
on a 2D grid with step-size ir/p is adequate by the sampling theorem.

Step 3 is the trapezoidal rule for the 2D inverse Fourier transform, prop-
erly discretized and complying with the Nyquist condition. Hence fm is an
approximation to f(pm/q).

Steps 1 and 3 of Algorithm 6 are justified by the sampling theorem. Thus
the failure of the algorithm must be caused by the interpolation in Step 2.
This is in fact the case. Of course we can replace the interpolation by a
more accurate one, such as linear interpolation. However, this does not help
much.

In spite of its poor accuracy, Fourier reconstruction is attractive because of
its favourable complexity, which is due to the fast Fourier transform (FFT).

We have used FFT in the circular harmonic algorithm already, but FFT
is so essential for Fourier reconstruction that we say a few words here; for
a thorough treatment we refer to Nussbaumer (1982). The discrete Fourier
transform of length q is defined to be

q-1

Any algorithm that computes yo, • • • jjq-i from yo, • • •, yq-\ in less then
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typically O(qlogq), operations is a called an FFT. In the circular harmonic
algorithm we have used FFT just for the evaluation of (6.3). In Fourier
reconstruction we employ FFT for the evaluation of Fourier integrals

for the functions / in R1 with support in (—p, p). Sampling theory tells us
that / has to be discretized with step-size ir/p (/ has bandwidth p). With
h — p/q the step-size for / , the trapezoidal rule provides the approximation

k = -q,...,q-l. (6.4)

The range of k is in agreement with the sampling theorem: the step-size
h = p/q corresponds to the bandwidth Q = n/h = (ir/p)q; hence |fc| < q in
(6.4) suffices. Of course (6.4) is a discrete Fourier transform of length 2q.
Sometimes one wants to adjust the step-sizes of / and / differently. Then
one has to evaluate

9 - 1

yk = J2e~iC'k/qyt' k = 0 , . . . , q - l (6.5)
£=0

with an arbitrary real parameter c. This can be done by the chirp-z-
algorithm (see Nussbaumer (1982)), again using typically O(q\ogq) oper-
ations.

Assuming that we have a fast Fourier transform (FFT) algorithm that
does a discrete Fourier transform of length q with O(q log q) operations (this
may restrict q to 'FFT-friendly numbers'), the complexity of Algorithm 6
is as follows. Step 1 does p Fourier transforms of length 2q, requiring
O(pqlogq) operations. Assuming that the interpolation in Step 2 can be
done in 0(1) operations per point we get 0(q2) as the complexity of Step 2.
The 2D Fourier transform in Step 3 can be done with 0(q2 log q) operations.
Hence the complexity of Algorithm 6 is O((pq + q2) logq). This is much bet-
ter than the filtered backprojection algorithm (Algorithm 1), which needs
O(q2p) operations for a reconstruction on a q x q grid.

Presently there exist two Fourier methods with satisfactory accuracy and
favourable complexity.

1. The linogram algorithm (Edholm and Herman 1987)
Here, interpolation in Fourier space is avoided altogether by a clever choice
of the directions <pj. The linogram algorithm works on the data

9f,e = 9(6j, se), <Pj = arccot (j/q),

j st), tpj= arctan (J/q),
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where j , £ = —q,..., q. Doing a ID Fourier transform on g^e results in

q e=-Q

where <pj = arccot (j/q)- For a = kir/psimpj we get from (6.1)

e=-q
Note that this can be done efficiently by the chirp-z-algorithm. The key
observation is that the points

k-K Q __ kir ( 1 \ _ k-K ( 1
1 ~ p \cot tpj) ~ p \j/q

form a grid lying on vertical lines with distance ir/p, being evenly spaced
within each vertical line (though with different step-sizes in different lines).
On such a grid we can do a ID FFT in the horizontal direction in the
usual way. In the horizontal direction the step-size is not what we need for
a direct application of the FFT, but the chirp-z-algorithm is still applica-
ble. This takes care of the 2D inverse Fourier transform in | ^ | > |£i|- For
|£i| < l&l we proceed analogously with the data gj^, evaluating f((T0j) for
a = kir/p cos ipj. We remark that the linogram data in Edholm and Herman
(1987) is a little different from ours, namely S£ = hisimpj, sg = hi cos <pj,
respectively. The use of these detector positions makes the linogram algo-
rithm even simpler in that the factor sin<^j in the right-hand side of (6.6)
disappears.

2. The gridding algorithm (O'Sullivan 1985, Kaveh and Soumekh
1987, Schomberg and Timmer 1995)
This algorithm works on the standard parallel data used in Algorithm 6. It
does the interpolation in Step 2 of Algorithm 6 in the following way. Let
w be a smooth function in R2 with w = 1 on \x\ < p which is decaying
exponentially at infinity. Put fw = wf. Then,

oo

= (27T)"1 fa Iw(Z-a9)f(a6)deda
0 S1

oo

= (2vr)-3/2 fafwfc- aO)g(O, a) d0 da
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by (6.1). Using a quadrature rule with nodes {ar,9j} and weights Oj>, we
obtain the approximation

p q / \
fw,k = (2TT)-3/2 ^ Yl a^rW ( -k - ar03 J gjr (6.7)

j=Qr=-q ^ '

to fw(-k). The method relies on the following assumptions.

1. w is decaying at infinity so fast that only a few terms of the r sum in
(6.7) have to be retained.

2. The dependence on the angle is not critical, so that it suffices to retain
only a few terms in the j sum of (6.7).

If these conditions are met then fw^ of (6.3) is a good approximation to
fw{^k) which can be evaluated essentially in 0(1) operations for each k.
This takes care of Step 2. Of course, when using (6.7) we have to divide /
by w after Step 3 to make up for the previous multiplication with w.

It is needless to say that our derivation of the gridding algorithm is purely
heuristic. It seems that at present there exists no convincing theoretical
analysis of the gridding algorithm.

7. Conclusions

In the preceding sections we have given the fundamentals of the most widely
used algorithms in tomography. In many ways these fundamentals are quite
different from traditional numerical analysis, the main difference being the
consistent use of sampling theory and Fourier analysis. The development
of algorithms is still very lively, particularly in 3D and in Fourier-based
algorithms.

We have dealt only with the most simple problems and with standard
situations. Practical problems deviate in many ways from the simple ones we
considered. Often the data is incomplete (see Louis (1980)), leading to non-
uniqueness and instability. Sometimes the integral equations to be solved
are not completely specified, for instance the weight function (as in emission
tomography (Welch, Clack, Natterer and Gullberg 1997)) or the directions
(as in electron microscopy (Wuschke 1990, Gelfand and Goncharov 1990))
are unknown. In technical applications in particular, the number of data
is often so small (see, for instance, Sielschott and Derichs (1995)) that full
reconstruction is impossible and special algorithms have to be developed,
usually tailored to the specific application. Sometimes only certain features
of the object, such as boundaries between regions of different densities, are
sought (Faridani, Finch, Ritman and Smith 1997, Ramm and Katsevich
1996), calling for special algorithms.
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At present we have an adequate understanding of the fundamentals of
tomographic reconstruction algorithms. However, new applications of to-
mography are arising almost daily, each presenting new challenges to the
numerical analyst. So I guess that research in this field will go on for ever!
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